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Abstract— Mobility on Demand (MoD) systems allow users to 
pick-up and drop-off vehicles (bikes, automobiles) ubiquitously 
in networks of parking stations. Asymmetric trip patterns cause 
imbalanced fleet allocation decreasing level of service. Current 
redistribution policies are complex to plan and typically cost 
more than the usage revenues of the system. This paper discusses 
a new operation model based on a double auction market where 
cost-minimizing users are both buyers and sellers of trip rights 
while profit-maximizing stations are competing auctioneers that 
trade them. Thus, trips are priced relatively to the inventory 
needs of origin and destination stations, causing some trips to be 
more expensive while other trips to pay back.  
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I. INTRODUCTION  
In Reinventing the Automobile, William Mitchell, Chris 

Borroni-Bird, and Lawrence Burns describe their vision on the 
future of intelligent mobility: cities covered with dense 
networks of charging stations and shared fleets of electric 
vehicles allowing users to make point-to-point trips on demand 
[1]. A layer of sensors, communication networks, computing 
units, and mobile devices allows users to quickly locate 
available vehicles or parking docks in real-time while operators 
to decide any necessary modifications in the system. What is 
somehow unclear in this description is how information from 
the physical world turns into action. Who senses the world, 
who distributes information, who makes decisions, who takes 
actions, and who evaluates the results? How is intelligence 
constructed? We discuss recent work carried through at the 
Smart Cities and Changing Places groups of the MIT Media 
Lab during the period 2008-2011 on a new operation model for 
Mobility on Demand (MoD) systems based on self-
organization [2]. The structure of the paper is organized as 
follows. The first part provides an overview on MoD systems 
using bike sharing as a case study. The second part reviews 
prior work in the field. The third part discusses the design of 
the Market Economy of Trips (MET) a new operation model 
for intelligent MoD systems. The fourth part discusses the 
equilibrium conditions of the MET. Finally, we conclude with 
the future directions of this work. 

A. MoD and Bike Sharing Systems 
Bike sharing systems (BSS) are gaining increasing attention 

in the research communities of intelligent MoD transportation 
systems. They constitute watertight systems to model, provide 

plenty of real-time data to use, and pose some interesting yet 
challenging research problems. Currently, more than 300 BSS 
around the world mobilize more than 3 million trips across 
15,000 stations every day. Despite their convenience, BSS 
systems have significant operational limitations. About 10%-
40% of the daily trip volume remains imbalanced due to 
asymmetric trip patterns. This displaced fleet must be hauled 
back by the end of each day otherwise the system starts next 
morning in a worse condition. To address asymmetric trip 
patterns, cities like Paris may spend up to $90M/year, nearly 
their entire usage revenues, paying gas, trucks and employees 
to manually move bikes from full to empty stations (Fig. 1).  
Yet, many BSS suffer from low level of service. During survey 
administered by the French company TNS Sofres, 48% of 
users in Velib, Paris, were unsatisfied with bike availability 
and 58% complained of insufficient parking spaces at the 
stations [3]. Currently, in Barcelona, almost 50% of the stations 
are unavailable (empty or full) during 30% of the time [4]. In 
car sharing this can only be worse as employees must either 
tow or drive cars using other service vehicles to move between 
relocations. Despite those problems, BSS are rapidly 
expanding: as of today more than 200 new systems are planned 
across the world [5].  

 
Figure 1.  Truck carrying bicycles during redistribution, in Velib Paris 

II. PRIOR WORK 
BSS is a relatively new area in transportation literature. 

Some works focus on analyzing and predicting human mobility 
patterns from datasets [6]; other works focus on optimizing 
inventory rebalancing or modeling truck repositioning using 
stochastic [7] or deterministic [8] methods. Finding provably 



optimal repositioning solutions is practically intractable. To 
simplify the complexity of the problem, several works 
distinguish between stations that can meet their level of service 
requirements without inventory correction and stations that 
require inventory correction [9]. In reality, all stations end the 
day with some discrepancy that accumulates each new day, if 
not corrected. Other works distinguish between dynamic 
[during the day] versus static [during the night] repositioning 
[10]. In practice, most repositioning is done empirically using 
real time information from the stations, directions from a 
dispatcher, and the truck drivers’ experience [11]. Even if 
routing methods were optimized the true cost of reposition 
would still remain prohibitively high. Considering the average 
lease of a sprinter truck, wage of a work shift, gas costs, and 
the maximum number of bikes that a truck with 25 slots 
repositions per day, a truck with 2 workers operating in 2 work 
shifts spends about $650 to reposition 140 bikes or $4.6 per 
bike repositioning, excluding IT costs. This cost ranges 
between $1.5-$15, depending on pricing, trip pattern 
characteristics, and routing efficiency. 

Not surprisingly, many bike-sharing experts argue that the 
next generation of intelligent BSS will rely heavily on 
incentivizing user behavior to mitigate, or even eliminate, 
operation burden [1][2][12]. Several current approaches are 
worth mentioning: Velib in Paris, rewards 15 minutes of 
additional time to users who ride their bikes up to the elevated 
stations at hills of Paris, marked with the V+ sign [13]. Capital 
Bikeshare in Washington offers points to users that drive bikes 
from full to empty stations allowing them to earn prizes that 
extend their membership for free [14]. Similar approaches have 
been implemented in pilot car-sharing systems such as the 
IntelliShare in the University of California Riverside, that 
incentivized users to ride individually from full to empty 
stations while share rides from empty to full stations reducing 
towing trips of up to 43% [15]. One of the obscurities of such 
reward offerings is that there is no clear mechanism for 
evaluating them. How much should a reward be and where will 
the funds to pay it come from?  

Markets are used for evaluating assets or services 
exchanged between suppliers and consumers such that in 
equilibrium each side is getting what is willing to give up for. 
Competitive markets have furthermore the property of 
maximizing the social welfare of their participants. Market 
mechanisms are often used in resolving allocation of scarce 
resources in networks with bandwidth and capacity constraints. 
Other benefits over traditional Operations Research methods 
include scalability, autonomy, and self-organization especially 
in larger scales. Applications include: file sharing systems [16]; 
train scheduling mechanisms [17]; computational grids and 
communication in sensor networks [18][19], hidden markets 
for P2P backup systems (systems where users participate 
without being aware of it) [20]; smart power grids and dynamic 
pricing in electricity grids; online display advertising; 
congestion pricing; electronic auctions; carbon trading 
programs; and water banking systems [21]. 

In transportation industry, market mechanisms have been 
used for preventing either bottlenecks at links or spillovers at 
nodes of networks. Interstate truck rentals use variable market-
based pricing depending on the pick-up and drop-off locations. 

For example U-Haul, a truck rental company based in US, 
prices a trip from Detroit to Houston about 170% higher than 
the other way around [22]. Smart parking systems use dynamic 
pricing to regulate demand and supply. For example, San 
Francisco launched in 2011 the first dynamically priced public 
parking system in the US [23]. Nevertheless the objective of an 
operator in BSS is not to avoid bottlenecks or spillovers but 
rather to maximize circulation of vehicles given capacity 
constraints. Since a trip requires both a vehicle at an origin and 
a parking space at a destination, a pricing model should take 
into account availability of both. 

We believe that the design of a pricing model for BSS 
should address three key issues. First, trip prices should reflect 
the demand and supply in both origin and destination stations. 
Second, the pricing model should channel revenues from 
penalties to finance rewards reflecting that high-payers pay in 
fact low-payers to reposition vehicles. Third, it should ensure 
that prices change slower than inventories to ensure system 
stability. The latency of the system depends on the average trip 
time and the system’s size: for example, in small deployments 
such as a university campus, changes in price would instantly 
reflect on inventory levels. In contrast, in large deployments 
such as a metropolitan district, price changes would take hours 
to reflect on inventory levels.  

The pricing model we describe in the next section is 
inspired by a rather unusual paradigm. Two-sided markets with 
intermediaries are institutional mechanisms consisting of 
buyers, sellers, and intermediary traders. Traders buy goods 
from competing sellers and resell them to buyers. Mutual peer 
competition, cost avoidance, and profit maximization, force 
prices to maximize the flow of goods from sellers to buyers, 
channeling it through the traders [25].  

III. THE MARKET ECONOMY OF TRIPS 

A. Motivation 
The Market Economy of Trips (MET) is a self-balancing 

operation model for MoD systems that motivates users to 
rebalance the fleet using price incentives. Like a stock market, 
trip prices change dynamically based on inventory needs of 
origin and destination stations causing some trips to be more 
expensive while other trips to pay back money  [24]. Stations 
‘bid’ and ‘ask’ prices based on inventory needs and the 
competition with neighbor stations. Trip values are determined 
by the transactional difference between “buying” a vehicle 
from an origin and “reselling” it to a destination (Fig. 2). By 
redirecting funds from overpaying to underpaying users the 
system converges to a self-sustaining equilibrium.  

If the pick-up price that an origin ‘asks’ is lower than the 
drop-off price that a destination ‘bids’ then the user wins the 
transactional difference from the system as a reward; in the 
opposite case the user pays the system the difference. Finally, 
if the pick-up price that the origin ‘asks’ is the same as the 
drop-off price that the destination ‘bids’ then the ride is free for 
the user. Thus the same drop-off location may be cheap for 
someone and expensive for someone else depending on where 
they come from. During pick-up, users lock prices for certain 
time period (e.g. 30min) and they pay during drop-off. The 
MET is a self-organizing system operated by and for its users.  



We propose a graphic user interface (GUI) that uses a 
heat/contour map display to relate prices to slope gradients to 
communicate price information to the users (Fig. 4): isometric 
price curves describe areas with same price indexes. Like 
navigating through a price landscape, climbing from valleys up 
to hills is expensive, descending from hills down to valleys is 
rewarding, while traveling through flat areas is neutral.  

 
Figure 2.  The origin-destination path (in blue) with highest payoffs in MET 

 

 
Figure 3.  Contour-map GUI: a possible interface for communicating payoffs 

using isometric curves of price indexes 

B. Analysis of the MET as an efficient marketplace 
We define the utility of a trip as the total cost spent on fare 

and fuel minus the total cost of time spent on travelling based 
on the individual user’s evaluation of time. On average, prices 
of urban mobility modes reflect the commuting times they take 
in relation to how their users evaluate their time. Commuters 
whose cost of time is high are willing to pay higher for faster 
options than commuters whose cost of time is low. Urban trips 
are combinations of multiple mobility modes: walk from house 
to a nearby bus station; take the bus to the downtown center; 
ride a bike inside the center; finally, walk again to the final 
destination. The commuting cost of each compound trip is the 
sum of the prices that have been paid for each option plus the 
total cost of time that was spent while traveling. People select 
those bundles of options that maximize their utility. 

 
Figure 4.  User decision making process. In equilibrium payoffs from OD 

should equal payoffs from OQ plus QD 

The following analysis assumes that people think rationally 
and can efficiently perceive their payoffs. For the users the net 
result of a transaction should yield less commuting costs than 
using their best alternative option. For example, a user 
traveling from an origin O, and ends to a final destination D, 
will select any drop-off station Q if the price from O to Q with 
VSS plus the price from Q to D with the substitute (e.g. bus, 
taxi, walking, etc.), plus the total time costs (from O to Q with 
MOD, and from Q to D with substitute) are in sum less or 
equal than the original price from O to D with the substitute 
plus time cost with substitute (Fig. 4, Fig. 5). Users whose time 
cost is high will therefore be willing to pay higher prices in 
MET to minimize their total commuting time, while users 
whose time cost is low would be willing to spend more time in 
commuting for a better price in the MET. For the stations, the 
transactions should balance revenues from pick-ups with costs 
from drop-offs and capital expenses such as vehicles and urban 
land occupation, and yield a marginal profit.  

 
Figure 5.  Price equilibrium graphic analysis of figure 5: The total trip cost 

with VSS from O to Q and with substitute from Q to D consist of: the 
downward pointing pick-up price vector at O; the up-warding inclined price 
vector from O to Q that depends on user’s cost of time and VSS’s traveling 

speed; the up-warding drop-off reward vector at Q; and the up-warding 
inclined vector from Q to D that depends on user’s cost of time, substitute’s 
traveling speed, and substitute’s fare per distance traveled. The total cost is 

indicated by the thick line at D. Similarly, the total trip cost from O to D with 
the substitute consist of the up-warding  inclined price vector from O to D that 

depends on user’s cost of time, substitute’s traveling speed, and substitute’s 
fare per distance traveled.  



The Market Economy of Trips is a form of a strategic 
game. Territorial decisions of users change the pricing of 
stations, which changes the payoff landscape affecting decision 
making of other users and vice versa. Urban Economic theory 
shows that users with sufficient information would make 
decisions that minimize their time-adjusted commuting costs 
bringing eventually the system into a competitive equilibrium 
where no further action can be taken to increase anyone’s 
payoffs [26]. Such equilibrium would come when no high 
paying and no low paying users prefer any other resources at 
the prices, including not participating.  

C. Convergence of the MET 
To explain how the Market Economy of Trips converges 

from one equilibrium state to another, we illustrate a rather 
unusual case. Suppose the MET starts in maximal flow 
equilibrium. In this ideal state, average vehicle inflows and 
outflows are equal in each station and as a consequence all 
inventory levels remain unchanged. Furthermore since vehicle 
flows are maximal all inventory levels must be the same 
(maximal flow equilibrium). As trip pattern becomes 
imbalanced, stations with inventory shortages increase both 
‘ask’ and ‘bid’ prices causing ‘buying’ a vehicle from there to 
be expensive, while ‘selling’ a vehicle there to be rewarding. 
Similarly, stations with inventory surpluses decrease both ‘ask’ 
and ‘bid’ prices causing ‘buying’ a vehicle from there to be 
cheap, while ‘selling’ a vehicle there to be non-worthy. As the 
gap between prices increases, moving from stations with 
shortages to stations with surpluses gets more expensive, while 
moving the other way around becomes profitable.  

Commuters with low cost of time will be willing to pick-up 
from stations further from their true origins and drop-off to 
stations further from their true destinations as long as this is 
still cheaper for them than using the substitute mode. Similarly, 
commuters with high cost of time will be willing to pickup 
from expensive stations closer to their true origins and drop-off 
to stations closer to their true destinations as long as the net 
result is still cheaper for them than using the substitute. In the 
most imbalanced demand pattern, the cost that each user is 
paying is marginally the same as the cost he would be 
otherwise paying with the substitute mode. Any additional 
change from this point will cause some users to opt out. As 
some users respond to prices while others opt out, the trip 
pattern asymmetry decreases causing the gap between prices at 
each station to decrease.  This in turn increases throughput 
performance bringing eventually the system into a new 
equilibrium state. 

D. Monopoly versus competitive pricing 
We observe two models for controlling pricing at the 

stations: monopoly and competitive pricing. In monopoly 
pricing, all stations represent one profit-maximizing firm and 
as a consequence they choose ‘bid’ and ‘sell’ prices that 
maximize revenues from departing trips and minimize costs for 
arriving trips; such setting however does not maximize vehicle 
flow in the system. In contrast, in competitive pricing all 
stations represent individual profit-maximizing traders that 
compete each other over prices: on one hand each station-
trader tries to ‘ask’ a lower pick-up price than its nearest 
neighbor’s ‘ask price (but not lower than its own ‘bid’ price), 

and on the other hand it tries to ‘bid’ a higher drop-off price 
than its nearest neighbor’s ‘bid’ price (but not higher than its 
own ‘ask price). Through mutual competition with its closest 
neighbors, each station drives ‘ask’ prices down and ‘bid’ 
prices up (to attract more users) until they match, maximizing 
thus flow of vehicles.  

E. The financial system of the MET 
While the physical system is watertight (the vehicles can 

never escape the vehicle sharing system), the financial system 
is open (money flows in as revenues from users and flows out 
as costs for rewards). The financial system of MET can be 
studied in two levels. At the station level, the revenues are 
determined by the pick-up price multiplied by the departures 
rate, while its costs are determined by the drop-off reward 
multiplied by the arrivals rate, and the payments for capital 
expenditures. During convergence, stations are trying to 
balance revenues with costs by adjusting pick-up and drop-off 
prices to redirect revenues from departures to costs for 
rewarding arrivals. At the system level, the gross revenues 
come from the flow of high-paying trips multiplied by the 
difference between the pick-up price at net sources and drop-
off reward at net sinks, while the gross costs go on financing 
the flow of redistributing sink-source trips plus capital 
expenditures. During convergence, the MET is trying to 
balance revenues with costs by adjusting trip prices to redirect 
revenues from expensive source-sink trips to costs for 
rewarding sink-source trips.  

 
Figure 6.  Cash flow system during financial disequilibrium and symmetric 

demand pattern (top), and asymmetric demand pattern (bottom) 

While each station has a local balance account for revenues 
and costs, during operation it may enter in a state of either 
financial deficit or financial surplus. There are two main 
reasons for this. First, there is a delay between the impact of 
pricing on users and the effect of their actions at the stations, 



which mainly depends on the average travel time. Second, 
during pricing the local financial resources of the station may 
not be sufficient to provide the desired rewards to incentivize 
users which could potentially bring the performance of the 
station down to a vicious cycle: less available funds, less 
rewards offered to low-payers, less redistribution from low-
payers, less demand from high-payers, less profits, and finally 
even less available financial resources. To avoid such 
circumstances, stations with financial deficit may need to 
borrow from stations with financial surplus. This fund 
reallocation must be carried out by a “central bank” and a 
borrowing/lending policy. Stations lend the bank during profit 
making borrowing from the bank during losses. The central 
bank thus provides a buffer that can sustain the system during 
demand fluctuations.  

The above observations are illustrated in the two diagrams 
in figure 6. During symmetric trip patterns all pick-up and 
drop-off prices are equal and all users pay the same price (Fig. 
6, top). During asymmetric trip patterns financial resources are 
redirected from high-paying users to low-paying users through 
the stations, which in turn are redirected from low-paying users 
to the substitute option (Fig. 6, bottom).  

F. Competitive equilibrium 
The following holds true during long-run equilibrium. 

• The daily inbound and outbound volumes are equal 
(e.g. all stations end the day with the same inventories 
as they started the day). 

• All users make a portion of their trip using a MoD 
vehicle and another portion using the substitute. The 
distance that the high-paying users travel with the 
substitute is on average less than the distance that the 
low-paying users travel with it. 

• The total commuting costs that each of the two groups 
of payers pay consist of the price they pay for MoD as 
this is defined by the pick-up price and the drop-off 
reward, the price they pay for the substitute, the time 
cost they suffer by using a MoD vehicle and the time 
cost they suffer by using the substitute. Since the 
substitute is slower than the MoD vehicle its time costs 
are higher than those of the MoD vehicle. 

• The cash flows that high-paying users pay to MET 
equal the cash flows that MET pays to the underpaying 
users plus the cash flows that MET pays for capital 
costs.   

• The cash flows that high-paying users pay to MET 
equal the throughput rate times the difference between 
average pick-up prices at net source stations and 
average drop-off rewards at net sink stations.  

• The cash flows that MET pays to the underpaying 
users equal the throughput rate times the difference 
between average pick-up prices at net sink stations and 
average drop-off rewards at net source stations.  

• The cash flows that low-paying users pay to the 
substitute plus their total time costs (by both MoD and 
the substitute) minus the cash flows that they receive 

from MET are less or equal to the cash flows that they 
would otherwise have to pay to travel from sources to 
net sinks with the substitute plus their time costs with 
from the substitute  

• Similarly, the cash flows that the high-paying users 
pay to MET plus the cash flows they pay to the 
substitute plus their total time costs (by both MoD and 
the substitute) are less or equal to the cash flows that 
they would otherwise have to pay to travel from net 
sources to net sinks with the substitute plus their time 
costs with from the substitute (which are much higher 
than those of the low-payers because high-payers have 
high time costs).  

Therefore the distribution of the personal cost of time on 
the population of commuters determines the theoretical 
performance of MET as it indicates the likelihood that some 
commuters would be willing to buy the time of other 
commuters. In a population where everyone evaluates time in 
the same manner nobody would be willing to spend more to 
commute faster and consequently nobody could earn rewards 
to drive further.  

IV. DISCUSSION 
In this paper we presented the Market Economy of Trips, a 

new operation model for MoD systems (bikes, scooters, 
automobiles) based on a double auction market where cost-
minimizing users are both buyers and sellers of trip rights 
while profit-maximizing stations are competing auctioneers 
that trade them. Trip rights are priced relatively to the 
inventory needs of origin and destination stations. This paper 
formulated MET as a game theoretic problem by describing the 
participants, their interests and their decision-making 
processes. The global goal of the system is to incentivize 
circulation throughput by inversely pricing both pick-up and 
drop off points. This can be done through the form of a two-
sided market where self-interested intermediary stations have 
an incentive to increase throughput flow. The paper further 
presented a pricing model that reflects an important 
requirement for sustainability: the flow of the funds that the 
overpaying users pay the system should balance the flow of 
rewards that the system pays the underpaying users. The 
underpaying users in turn pay the alternative option as they 
redistribute the vehicles. This means that a dynamically priced 
MoD system must exist synergistically with existing public 
transit infrastructure. 

V. FUTURE WORK 
As part of the next steps of this work we want to assess the 
limits of efficiency of the MET comparatively to those of 
current truck repositioning methods, using bike sharing as a 
case study. The difficulty of this endeavor is two-fold: on one 
hand there are no reasons to believe that current truck 
repositioning is done in the most efficient way. On the other 
hand we are not aware of existing applications of market 
based pricing similar to the MET in vehicle sharing systems. 
Furthermore, the work we presented here is based on the 
efficient market hypothesis, e.g., that users are rational and 
that they have full access to information. In practice, neither of 



those two assumptions holds fully true. We are currently 
working on two directions. In the first direction we are 
building a computational simulation model using data from 
bike sharing systems, to analytically explore the limits of 
efficiency of truck repositioning under the constraint that 
ridership revenues cover repositioning costs. In the second 
direction, we are designing a game-based life experiment 
using a BSS as a living laboratory. Our future work will 
compare the empirical results of the experiment with the 
analytical results of the simulation model. 
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